第47卷

第4期

DOI:10. 16578/j. issn. 1004. 2539. 2023. 04. 020

2023年

连续管注入头链传动啮合及接触分析

胡 政¹ 马卫国¹ 曲宝龙² 刘雪行¹ (1长江大学 机械工程学院,湖北 荆州 434020) (2长江大学 化学与环境工程学院,湖北 荆州 434020)

摘要 连续管注入头链传动的不平稳性和链条、链轮的磨损是常见问题,也是导致连续管打滑、 溜管和咬伤的主要因素。为此,建立了注入头链条与链轮轮齿啮合接触力学模型,分析了链条紧边 力、紧边夹角、链条伸长率对接触点位置和齿面支反力的影响,揭示了链条与链轮的啮合行为,并 用Ansys仿真验证了接触力学模型的准确性,为注入头的设计和安全可靠工作奠定理论基础。研究 表明,当链条紧边力增加,松边力不变时,紧边侧链条的啮入位置基本不变,松边侧链条的啮出位 置向齿底靠近,齿面支反力增大;当紧边力接近松边力时,松边侧链条啮出位置的齿面支反力存在 陡然增加现象;链条紧边夹角增加对紧边侧链条啮入位置及其齿面支反力影响不大,链条的啮出位 置向齿底靠近;当链条伸长时,链条的啮入和啮出位置分别背向轮齿齿底方向,啮合点位置升高。 关键词 连续管 注入头 链传动 啮合 Ansys仿真

Engagement and Contact Analysis of Coiled Tubing Injector Head Chain Drive

Hu Zheng¹ Ma Weiguo¹ Qu Baolong² Liu Xuehang¹ (1 School of Mechanical Engineering, Yangtze University, Jingzhou 434020, China) (2 School of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434020, China)

Abstract The coiled tubing injector head is the core component of the coiled tubing oil and gas well operation equipment, which directly determines the coiled tubing operation capability, and its chain drive system pulls the coiled tubing in or out the wellbore. However, the unsteady chain drive and the wear between the chain and sprocket are common problems which are the main factors leading to slipping, pipe sliding and bites of coiled tubing in engineering practice. Based on the standard roller chain and sprocket, the mechanical model of the engagement contact between the injector head chain and the sprocket teeth is established to analyze the influence of chain tension force, chain tension angle and chain pitch on the position of contact points and tooth surface support reaction force, and the accuracy of the contact mechanical model is verified by Ansys simulation which lays a theoretical foundation for the design and safety of the injector. The research shows that when the tension force of the chain increases and the loosening force remains unchanged, the engaging-in position of the chain on the tension side is basically unchanged, the reaction force of the tooth surface support increases, and the engaging-out position of the chain rollers is close to the bottom of the sprocket teeth. However, when the tension force approaches the loosening force, there is a sudden increase in the support reaction force of the engaging-out contact position. The increase of the angle between the tension side and the vertical direction of the chain has little effect on the engaging-in position and the tooth surface support reaction force, the engaging-out position of the chain rollers is close to the bottom of the sprocket teeth. The engaging in and out points of the chain are respectively away from the direction of the bottom of the sprocket teeth and the contact position is improved when the chain is extended.

Key words Coiled tubing Injector head Chain drive Engagemen Ansys

0 引言

连续管工程技术以其油气井带压作业、保护油 层、作业成本低、作业效率高、装置占用空间少、 移运方便等优势,已被广泛应用于石油开采的各个 环节[1-2]。连续管注入头是连续管油气井作业设备的 核心部件,其链传动系统牵引连续管起出或注入井 筒,直接决定连续管作业能力。工程实际中,链传 动的不平稳性和链条、链轮的磨损是常见问题,也 是导致连续管打滑、溜管和咬伤的主要因素。连续 管注入头链传动不同于一般工业链传动,其结构由 成对的两副竖直安装的链传动构成,在夹持作用下 完成链传动对连续管的上下输送。链传动的平稳性 和链条链轮的磨损除了受到上下链轮共面度、链条 链轮的材料、润滑情况等因素的影响¹³⁻⁴¹之外,连续 管受到的井下作业载荷、链条受到的夹持作用和状 态、链条在载荷作用下的弹塑性伸长等不可避免的 工程因素也将对链传动的平稳性和链条链轮的接触 与磨损产生重大影响。当前油气井工程中常用的连 续管注入头牵引载荷在140~900 kN之间,一次牵引 连续管管长可达到8000m。精确分析连续管注入头 作业过程中链传动链条与链轮轮齿的接触状态,揭 示工程因素对链传动性能的影响是本研究的重要内 容之一。

关于一般工业链传动链条与链轮的接触,许多 学者做过大量的研究。Naji 等⁵⁵推导了链条滚子与链 轮啮合轨迹公式,并分析了不同链条节距下啮合滚 子的压力角变化。Kim 等^[6-8]分别建立了不同的滚子 与链轮啮合模型。张守年等19-10讨论了滚子链传动的 受力,分别计算了内外链节啮入、啮出主动链轮时, 相邻链节之间拉力、滚子所受的支持力。Pedersen 等[11-12]基于滚子与链轮啮合的连续性假设,提出了两 种不同的齿廓接触建模方法,提出的模型有效地揭 示了链传动中出现的多边形效应,结果表明,标准 链轮齿廓模型优于圆齿廓模型。许立新等四建立了 滚子与链轮啮合冲击动力学模型, 计算了啮合冲击 力幅值;采用Hertz接触理论,对齿面接触应力进行 了静态条件下的理论计算。Velicu等[14-15]建立了滚子 和链轮轮齿啮合的数学模型,并得出滚子与轮齿的 啮合位置直接受到链轮几何形状影响,以及啮合滚 子压力角依次递增的结论,但没有考虑链条链轮的 受力。Nikam等[16-17]基于有限元仿真计算了滚子与链 轮之间的接触应力。

众多研究表明,链传动中链条与链轮的啮合行 为及其影响因素比较复杂,多数基于啮合几何关系、 力学边界条件进行计算分析,较少考虑链传动个性 化结构和链条的弹塑性变形。本文结合连续管注入 头这一特殊结构的工程设备,基于几何和力学方法, 建立了注入头竖直链传动链条与链轮轮齿啮合接触 模型,采用Matlab算法编程求解,研究链条滚子与 链轮的啮合轨迹及受力,分析了链条伸长率、链条 紧边力、紧边链条夹角对链传动性能的影响,为连 续管注入头链传动设计研究提供参考。

1 注入头链传动结构与工作原理

注入头作为连续管作业机的核心部件,其主要 功能是实现连续管的上提和下放。注入头起下连续管 主要通过两个模块协同实现,一是夹紧液压缸驱动两 侧推板推动链条向中心位置的连续管的方向运动,将 夹紧力依次传递给链条及连接在链条上的夹持块,并 抱紧连续管;二是液压马达驱动链轮转动和链条运 动。注入头链传动结构如图1所示,左右主动链轮 (上链轮)相向运动,实现连续管的上下牵引。

2 链传动啮合和支反力模型

2.1 坐标系的建立

标准链轮齿廓为三圆弧一直线¹⁸³,齿廓设定 为齿顶圆弧*AB、A'B'*,直线段*BC、B'C'*,工作圆 弧*CD、C'D'*以及齿底圆弧*DD'*。建立两种坐标系: ①每个轮齿都有一个以齿底圆弧*DD'*圆心为坐标原 点的局部坐标系,如图2所示;②以链轮中心为坐标 原点的绝对坐标系,如图3所示。

2.2 接触位置模型

为了方便描述滚子坐标,假定滚子i = 1的局部 坐标系为x'Oy',如图4所示。给定链条节距、链轮 节距、滚子直径,若已知滚子i = 1的圆心坐标 $(x'_{o,i-1}, y'_{o,i-1})$,根据齿廓几何关系,建立非线性

图 3 绝对坐标系 Fig. 3 Absolute coordinate system

方程组并求解,得到滚子i的圆心坐标 $(x_{o,i}, y_{o,i})$ 以及接触位置坐标 $(x_{e,i}, y_{e,i})$,并依次求出与链轮啮合的各链条滚子的圆心坐标和接触位置坐标。

Fig. 4 Engaging relationship of adjacent rollers

为了建立非线性方程组,首先需要求出滚子*i*-1的圆心在相邻齿廓*i*局部坐标系下的坐标。若滚子 *i*-1的圆心坐标为(*x*'_{o,i-1}, *y*'_{o,i-1}),坐标转换公式 分别为

$$x_{o,i-1} = P_s \cos \frac{\pi}{z} + x'_{o,i-1} \cos \frac{2\pi}{z} + y'_{o,i-1} \sin \frac{2\pi}{z} \quad (1)$$

$$y_{o,i-1} = -P_s \sin \frac{\pi}{z} - x'_{o,i-1} \sin \frac{2\pi}{z} + y'_{o,i-1} \cos \frac{2\pi}{z} \quad (2)$$

式中, P_s为链轮节距, mm; z为链轮齿数。

当滚子*i*在与齿底圆弧*DD*′接触时,由几何关系可得

$$(x_{o,i} - x_{o,i-1})^2 + (y_{o,i} - y_{o,i-1})^2 = P_c^2$$
(3)

$$(x_{o,i} - a_1)^2 + (y_{o,i} - b_1)^2 = (\rho_1 - R)^2$$
(4)

$$x_{c,i} = x_{o,i} \pm R \cos\left(\arctan\frac{y_{o,i} - b_1}{x_{o,i} - a_1}\right)$$
(5)

$$y_{c,i} = b_1 - \sqrt{\rho_1^2 - (x_{c,i} - a_1)^2}$$
(6)

式中, P_c 为链条节距, mm; R为链条滚子半径, mm; ρ_1 为齿底圆弧 DD'半径, mm; a_1 、 b_1 分别为齿底圆弧 DD'在局部坐标系下的圆心横坐标和纵坐标。

当滚子*i*在与圆弧*CD*或*C'D*'接触时,式(4)变为 $(x_{o,i} - a_2)^2 + (y_{o,i} - b_2)^2 = (\rho_2 - R)^2$ (7)

式中, a_2 、 b_2 分别为齿廓圆弧 CD或 C'D'的圆心横坐标和纵坐标; ρ_2 为圆弧 CD或 C'D'的半径, mm。

当滚子*i*在与线段*BC*或*B'C*'接触时,由几何关系可得

$$(x_{o,i} - x_{o,i-1})^2 + (y_{o,i} - y_{o,i-1})^2 = P_c^2$$
(8)

$$y_{o,i} = mx_{o,i} + n + R\sqrt{m^2 + 1}$$
(9)

$$x_{c,i} = x_{o,i} + \frac{mR}{\sqrt{m^2 + 1}}$$
(10)

$$y_{c,i} = mx_{c,i} + n \tag{11}$$

式中, *m*为齿廓线段 *BC* 或 *B'C*'在局部坐标系下的斜率; *n*为截距。

联立式(1)~式(11),可依次求出滚子与链轮齿 面任意位置啮合时滚子的圆心坐标以及接触位置 坐标。

2.3 链传动啮合轮齿支反力模型

计算各滚子与链轮轮齿接触位置的前提是已知 滚子*i*在局部坐标系下的圆心坐标,为了确定滚子*i* 的圆心坐标,则需要考虑链条链轮的受力问题。基 于几何和力学方法,建立了注入头竖直链传动链条 与链轮轮齿啮合接触模型。采用 Matlab 软件编程联 立求解滚子接触位置、啮入角、啮出角、滚子压力 角、各链节之间拉力以及齿面支反力计算公式,此 时若给定链条紧边力,并以松边力为收敛条件,经 过反复迭代便可确定所有接触滚子的局部坐标、绝 对坐标以及受力。

2.3.1 绝对坐标转换

为了模拟滚子从啮入到啮出链轮的整个运动过 程,建立的注入头链传动模型并非如图3所示静止 不动,而是链轮可以绕其中心旋转。在此引入变量 k,控制链轮的旋转角度。将滚子的局部坐标转换 成以链轮中心为原点的绝对坐标,可方便计算滚子 的啮入角、啮出角、压力角以及受力。坐标转换公 式分别为

$$X_{o,i} = R_1 \cos(-6+k) + x_{o,i} \sin(-6+k) + y_{o,i} \cos(-6+k)$$
(12)

$$Y_{o,i} = R_1 \sin(-6+k) - x_{o,i} \cos(-6+k) + y_{o,i} \sin(-6+k)$$
(13)

$$X_{c,i} = R_1 \cos(-6+k) + x_{c,i} \sin(-6+k) + y_{c,i} \cos(-6+k)$$
(14)

$$Y_{c,i} = R_1 \sin(-6+k) - x_{c,i} \cos(-6+k) + y_{c,i} \sin(-6+k)$$
(15)

式中, $X_{o,i}$ 、 $Y_{o,i}$ 、 $X_{c,i}$ 、 $Y_{c,i}$ 分别为绝对坐标下滚子的圆 心横坐标、纵坐标、接触位置的横坐标、纵坐标; R_1 为链轮分度圆半径, mm; k为链轮的旋转角度。

2.3.2 滚子啮入啮出角以及压力角

如图 3 所示,右侧为链条紧边,与链轮已经啮合的滚子从右至左依次是滚子 1、2、…、h。滚子 1、 滚子 2之间的拉力连线与竖直方向之间的夹角 δ_1 称 为啮入角;滚子 h-1、滚子 h之间的拉力与竖直方 向之间的夹角 δ_h 称为啮出角。啮入、啮出角计算公 式分别为

$$\delta_{1} = \left| \arctan \frac{X_{o,1} - X_{o,2}}{Y_{o,1} - Y_{o,2}} \right|$$
(16)

$$\delta_h = \arctan \frac{X_{o,h-1} - X_{o,h}}{Y_{o,h-1} - Y_{o,h}}$$
(17)

式中, $X_{o,1}$ 、 $Y_{o,1}$ 分别为啮入滚子的圆心横坐标和纵坐标; $X_{o,h}$ 、 $Y_{o,h}$ 分别为啮出滚子的圆心横坐标和纵坐标;h为啮出滚子。

压力角为滚子*i*和*i*-1之间的拉力连线与滚子*i* 所受的齿面支反力之间的夹角。啮入压力角*J*_o,、啮 出压力角*J*_o,、滚子1到滚子*h*之间任一滚子*i*的压力 角*J*_o,计算公式分别为

$$J_{o,1} = \arctan \frac{X_{c,1} - X_{o,1}}{Y_{c,1} - Y_{o,1}}$$
(18)

$$J_{o,i} = -\cot \frac{Y_{o,i+1} - Y_{o,i}}{X_{o,i+1} - X_{o,i}} + \cot \frac{Y_{c,i} - Y_{o,i}}{X_{c,i} - X_{o,i}}$$
(19)

$$J_{o,h} = \left| \arctan \frac{X_{c,h} - X_{o,h}}{Y_{c,h} - Y_{o,h}} \right|$$
(20)

式中, $X_{e,1}$ 、 $Y_{e,1}$ 分别为啮入滚子与链轮接触位置的横 坐标和纵坐标; $X_{e,h}$ 、 $Y_{e,h}$ 分别为啮出滚子与链轮接触 位置的横坐标和纵坐标。

2.3.3 链节拉力与齿面支反力

忽略链条销轴与套筒、套筒与滚子、滚子与轮齿 之间的摩擦力。由力学平衡原理可知,滚子*i*受滚子 *i*-1、滚子*i*+1的拉力以及齿面支反力作用,滚子 处于平衡状态。各链节之间拉力S的计算公式分别为

$$S_{1} = F \frac{\sin \alpha \cos \delta_{1} + \cos \alpha \sin \delta_{1}}{\cos J_{o,1} \sin \delta_{1} + \sin J_{o,1} \cos \delta_{1}}$$
(21)

$$S_{i} = \frac{S_{i-1}\sin(J_{o,i-1})}{\sin(2\pi/z + J_{o,i-1})}$$
(22)

$$S_{h} = S_{h-1} \frac{\cos J_{o,h} \sin \delta_{h} + \sin J_{o,h} \cos \delta_{h}}{\cos \beta \sin \delta_{h} + \sin \beta \cos \delta_{h}}$$
(23)

式中, *F*为链条紧边力, N; α为链条紧边与竖直方向的夹角; β为链条松边与竖直方向的夹角。

各齿面支反力N的计算公式分别为

$$N_1 = F \frac{\cos\alpha \sin J_{o,1} - \sin\alpha \cos J_{o,1}}{\sin\delta_1 \cos J_{o,1} + \cos\delta_1 \sin J_{o,1}}$$
(24)

$$N_{i} = \frac{S_{i} \sin(2\pi/z)}{\sin J_{o,i-1}}$$
(25)

$$N_{h} = S_{h} \frac{\sin J_{o,h} \cos \beta - \sin \beta \cos J_{o,h}}{\sin \delta_{h} \cos J_{o,h} + \cos \delta_{h} \sin J_{o,h}}$$
(26)

若齿面支反力与竖直方向夹角为λ,则各齿面支 反力在竖直方向上分力*N*_s以及在水平方向上分力*N*_p 计算公式分别为

$$N_{s,i} = N_i \cos\left(\arctan\frac{X_{c,i} - X_{o,i}}{|Y_{c,i} - Y_{o,i}|}\right)$$
(27)

$$N_{p,i} = N_i \sin\left(\arctan\frac{X_{c,i} - X_{o,i}}{|Y_{c,i} - Y_{o,i}|}\right)$$
(28)

2.3.4 计算流程图

链传动啮合轨迹及齿面支反力计算流程如图5所 示, Δ为计算允许误差。

3 影响因素分析

本文以某实际注入头为例,其最大提升力为 450 kN,张紧油缸作用力共为38 kN,所用链条链轮 主要参数如表1所示。讨论链条节距、链条紧边力以 及链条紧边夹角对滚子与链轮接触位置、齿面支反 力的影响。

Tab. 1 Main parameters of chains and sprockets

链轮齿数z	链轮节距/mm	链条节距/mm	滚子直径/mm
15	63.5	63.5	19. 84

3.1 链条伸长率的影响

链轮齿数 z=15,则一个齿的角度为24°,只要找 到滚子的啮入位置并旋转链轮24°,即可模拟滚子从 啮入到啮出链轮时,滚子圆心坐标、接触位置坐标、 压力角、链节拉力以及齿面支反力的变化。

3.1.1 链条链轮等节距

施加链条紧边力 122 kN, 松边力 9.5 kN, $\alpha = \beta = 0^{\circ}$ 。当链轮旋转 6°, 即 *k*=6°, Δ =0.005 时, Matlab编程计算输出结果分别如表 2、表 3 所示, 其坐标 为局部坐标。

表2 等节距时接触位置及链节拉力

 $Tab.\ 2\quad Contact\ position\ and\ chain\ link\ tension\ with\ equal\ pitch$

序号	接触点横坐	接触点纵坐	 压力角/(°)	链节拉力/
	标/mm	标/mm		N
滚子1	15. 644 4	-12. 443 5	38. 81	98 738
滚子2	15. 635 2	-12. 455 0	26.76	57 402
滚子3	15. 619 2	-12.4748	26.80	33 395
滚子4	15. 591 8	-12. 508 8	26.86	19 453
滚子5	15. 544 8	-12.5671	26.96	11 355
滚子6	10. 282 9	-17. 141 5	40.04	8 787
滚子7	2. 421 8	-19.8419	71.04	8 343
滚子8	-5.8580	-19. 111 6	95.04	9 505
滚子9	-13. 124 9	-15.0766	119.04	9 505

表3 等节距时齿面支反力

 Tab. 3
 Reaction force of the tooth surface with equal pitch

序号	N/N	$\lambda/(^{\circ})$	N_s/N	N_p/N
滚子1	32 592	38.81	25 398	20 425
滚子2	51 852	14.82	50 127	13 265
滚子3	30 129	9.15	29 746	-4 791
滚子4	17 513	33.10	14 671	-9 564
滚子5	10 186	57.02	5 545	-8 545
滚子6	4 884	60.96	2 371	-4 270
滚子7	3 588	60.95	1 742	-3 137
滚子8	3 881	60.96	1 884	-3 393
滚子9	0	60.96	0	0
合计			131 484	-10

根据力学平衡原理,齿面支反力在竖直方向上 分力的合力应等于紧边力与松边力之和,齿面支反 力在水平方向上的合力应为0。由表3可知,链轮 齿面支反力在竖直方向上分力的合力为131484 N, 与施加的边界条件131500 N 相差16 N,相对误差 为0.00012。齿面支反力在水平方向上分力的合力 为-10 N。

链轮每旋转1°,用 Matlab 计算出一组数据,旋 转24°后对数据插值共30000多组数据。为了更直观 地看出支反力在齿面上随滚子接触位置的变化,将 齿廓展开成平面,以DD'中点为展开后坐标的原点, 齿面支反力随滚子与链轮接触位置的变化曲线如图6 所示,齿面支反力随链轮旋转角度的变化曲线如图7 所示。

图7 齿面支反力随链轮旋转角度的变化

Fig. 7 $\,$ Variation of reaction force with the rotation angle of the sprocket

由图6可知,链条节距与滚子节距相等时,滚子的啮入位置在17.97 mm处,啮出位置在-14.32 mm 处,滚子不与直线段齿廓接触。D'处齿面支反力最大,表明齿面最大支反力处于齿底圆弧和工作圆弧的交线处。

由图7可知,链条节距与滚子节距相等时,自滚 子开始与链轮啮合,齿面支反力由0增至最大64 kN, 随后逐渐减小,第8齿处略微增大。

由表2可知,链条节距与滚子节距相等时,前5 个滚子与链轮轮齿的接触位置非常接近且均在齿廓 右端。滚子压力角自第2个齿至第9个齿依次增加。

在链轮旋转2π/z的过程中,当出现S₁接近

122 kN,同时*S*_{*h*}接近9.5 kN,此时可以定义滚子1所 处的位置为啮入位置;当出现*N*_{*h*}接近0,同时*S*_{*h*}接近 9.5 kN时,可以定义滚子*h*所处的位置为啮出位置。 依据表2和表3不能找到啮入齿,啮出齿为第9齿。 3.1.2 链条伸长率

链条工作一段时间后,会因套筒之间的间隙、 铰链之间的磨损以及链条在较大载荷作用下都可能 产生一定的伸长量。不影响正常工作的最大允许链 条伸长率为3%。这里计算讨论链条伸长率分别为 1%、2%、3%时,对链条滚子接触位置及轮齿受力 的影响,如图6和图7所示。

由图6可知,随着链条伸长率的增加,滚子的啮 入位置、啮出位置、最大支反力位置均会背向轮齿 的齿底方向移动,接触点位置升高,但都没有超过*C* 点和*C*′点,且承受较大载荷的齿面区域、齿面最大 支反力增大。

由图7可知,随着链条伸长率的增加,滚子开始 与链轮啮合后,齿面支反力由0增至最大,随着链轮 继续旋转,齿面支反力逐渐减小,在第8齿,齿面支 反力略微增大。

以链条伸长率 3% 为例,当 $\alpha = \beta = 0^{\circ}$, $k=0^{\circ}$, $\Delta=0.005$ 时, Matlab 编程计算输出结果如表 4、表 5 所示,其坐标为局部坐标。

表4 链条伸长3%时接触位置及链节拉力

Tab. 4 Contact position and chain link tension with chain pitch

elongated	3%
orongatou	5,0

序号	接触点横 坐标/mm	接触点纵 坐标/mm	压力角/(°)	链节拉力/N
滚子1	20. 748 8	-4. 791 6	34.60	108 971
滚子2	20. 667 5	-4.9400	15.66	46 103
滚子3	20. 477 1	-5. 283 3	16.23	19 957
滚子4	20. 044 5	-6.0415	17.49	9 054
滚子5	19. 117 3	-7. 573 3	20.03	4 463
滚子6	17. 301 5	-10. 267 6	24. 55	2 474
滚子7	-16. 117 4	-11. 846 5	130. 73	4 393
滚子8	-18. 465 9	-8. 582 4	133. 20	8 264
滚子9	-19.7230	-6. 586 3	136.89	9 512

由表4可知,链条伸长率为3%时,前4个滚子 的接触位置较为接近且在齿廓右端;第7至第9滚子 的接触位置从齿底廓右端移动至左端;滚子压力角 自第2个齿至第9个齿依次增加。

由表5可知,齿面支反力在竖直方向上分力的 合力为131562N,与施加的边界条件131500N相 差62N,相对误差为0.00047。齿面支反力在水平 方向上的合力为34N。

Tab. 5 Reaction force of the tooth surface with chain

pitch elongated 3%				
序号	N/N	$\lambda/(\circ)$	N _s /N	N_p/N
滚子1	16 309	33.60	13 584	9 025
滚子2	69 433	10. 79	68 205	12 998
滚子3	29 030	11.77	28 420	-5 922
滚子4	12 252	35.80	9 937	-7 167
滚子5	5 298	57.82	2 821	-4 484
滚子6	2 421	78.22	494	-2 370
滚子7	2 358	4.03	2 352	166
滚子8	4 612	15.50	4 444	-1 232
滚子9	1 632	36. 89	1 305	-980
合计			131 562	34

3.2 链条紧边力的影响

保持链条松边力9.5 kN、 $\alpha = \beta = 0^{\circ}$ 不变,依次 增大链条紧边力,模拟注入头链传动工作时牵引力 的变化。不同紧边力作用时,齿面支反力随滚子接 触位置变化如图8所示,图9所示为齿面最大支反力 的局部放大图。

力对滚子的啮人位置影响不大,滚子啮出位置随着

紧边力的增加向齿底靠近;随着紧边力的增加,啮 入位置最大支反力增大,啮出位置支反力减小。值 得注意的是,紧边力接近松边力时,啮出支反力存 在陡然增加的现象。

3.3 链条紧边夹角的影响

注入头工作时,链条夹紧连续管的同时也会引 起链条紧边啮入链轮时与竖直方向存在一定的夹角。 为了更加精确地揭示注入头链传动性能,这里分别 计算当施加紧边力122 kN、松边力9.5 kN、β=0°,α 分别为0°、10°、20°以及30°等4种情况时,链条紧 边夹角对链条滚子接触位置及轮齿受力的影响,分 别如图10、图11所示。

angle at different α

由图10、图11可知,增大α对链条滚子啮入位 置、最大齿面支反力位置、齿面支反力大小影响不 大,滚子的啮出位置随着α的增大向齿底靠近;增 大α对参与啮合的滚子数量会有影响,由夹角0°时 的9齿啮合,变为夹角30°时的8齿啮合。

4 验证

4.1 实验验证

该注入头工作一段时间后,链轮轮齿表面形貌 如图12所示,分为齿面光亮区和非光亮区,光亮区 在齿底圆弧段和工作圆弧段,非光亮区在齿顶圆弧段。齿面光亮区是由于滚子与轮齿接触磨损造成的, 由此可以验证滚子和轮齿的接触区域在齿底圆弧段 和工作圆弧段,滚子不与齿顶圆弧接触。

图 12 链轮轮齿表面形貌 Fig. 12 Surface appearance of sprocket teeth

4.2 仿真验证

注入头链传动系统尺寸较大、零件较多、接触 较多,为节省计算资源,将链传动模型简化后导入 Ansys,如图13所示。

图 13 注入头链传动简化模型 Fig. 13 Simplified model of injector head chain drive

施加链条紧边力122 kN、松边力9.5 kN,链轮 施加位移约束,仅可绕轴旋转。网格整体采用四面 体划分,尺寸为5 mm,滚子和齿面接触区域网格尺 寸为3 mm。

在"Analysis Setting"中打开"Nodal Forces"、 "Contact Miscellaneous",在"Solution"中插入 "Force Reaction"。跟踪其中一个滚子,当其啮入至 啮出后, Ansys齿面支反力输出结果如图14所示。

由图 14 可知, Ansys 齿面支反力输出结果与建 立的链条、链轮轮齿啮合接触力学模型的计算输出 结果较为吻合,进一步验证了模型的准确性。

5 结论

(1)基于几何和力学方法,以链传动的紧边力、 松边力为边界条件,推导了注入头链条滚子接触位 置、啮入角、啮出角、压力角、相邻链节拉力和齿 面支反力的计算公式,在标准轮齿齿廓下建立了链 条与链轮轮齿啮合接触的力学模型,计算结果满足 链传动系统力学平衡条件,并用实验和Ansys仿真验 证了模型的准确性。

(2)链条伸长率、链条紧边力和链条紧边夹角 对连续管注入头链传动性能都有一定的影响。其中, 链条伸长率影响最显著。因此推断,连续管注入头 工作载荷和链传动设计对链传动性能有较大的影响。 但是,本文连续管注入头链传动中链条与链轮轮齿 的啮合都处在齿底圆弧段和工作圆弧段,设计合理。

参考文献

[1] 贺会群.连续油管技术与装备发展综述[J].石油机械,2006,34 (1):1-6.

HE Huiqun. Development of coiled tubing technique and equipment [J]. China Petroleum Machinery, 2006, 34(1): 1-6.

- [2] THOMSON I. Recent developments to coiled tubing equipment design improves efficiency and safety [M]. Society of Petroleum Engineers - Coiled Tubing and Well Intervention Conference and Exhibition, 2014:149-159, 2014.
- [3] AMIRUDDIN H, ABDOLLAH M F B, NIZAR M A D M. Measurement of roller chain wear lubricated with palm oil-based hexagonal boron nitride nanoparticles[J].Industrial Lubrication and Tribology, 2020,72(10):1199-1204.
- [4] METIL'KOV S A, BEREZHNO S B, YUNIN V V.Wear of hinges in roller drive chain[J].Russian Engineering Research, 2008, 28(9): 839-844.
- [5] NAJI M R, MARSHEK K M. Analysis of roller chain sprocket pressure angles [J]. Mechanism and Machine Theory, 1984, 19 (2) : 197-203.
- [6] KIM M S, JOHNSON G E. Mechanics of roller chain sprocket contact: observations about the contact phenomena and load distribution

[J].Proceedings of the ASME Design Engineering Technical Conference, 1992:697–702.

- PEREIRA C M, AMBROSIO J A, RAMALHO A L. A methodology for the generation of planar models for multibody chain drives [J]. Multibody System Dynamics, 2010, 24(3): 303–324.
- [8] PEREIRA C M, AMBROSIO J A, RAMALHO A L. Dynamics of chain drives using a generalized revolute clearance joint formulation [J].Mechanism & Machine Theory, 2015, 92:64–85.
- [9] 张守年,颜景平.滚子链的普通啮合[J].机械设计,1993(6): 65-67.
 ZHANG Shounain, YAN Jingping.Ordinary engaging of roller chains
 [J].Journal of Machine Design, 1993(6):65-67.
- [10] 王义行.滚子链传动正确啮合条件[J].吉林工业大学学报,1981 (1):23-36.

WANG Yixing. Correct engaging conditions for roller chain drives [J].Journal of Jilin University of Technology, 1981(1):23-36.

- PEDERSEN S L.Model of contact between rollers and sprockets in chain-drive systems [J]. Archive of Applied Mechanics, 2005, 74 (7):489-508.
- [12] PEDERSEN S L, HANSEN J M, AMBROSIO J A C.A roller chain drive model including contact with guide-bars[J].Multibody System Dynamics, 2004, 12(3):285–301.
- [13] 许立新,杨玉虎,刘建平,等.链传动啮合冲击理论分析及有限元 模拟[J].天津大学学报,2010,43(2):132-137.
 XU Lixin, YANG Yuhu, LIU Jianping, et al. Theoretical analysis and finite element simulation of the meshing impact of roller chain drive [J].Journal of Tianjin University,2010,43(2):132-137.
- [14] VELICU R, ULESCU R, GAVRIL C.Kinematic modelling of contact point between chain bush and sprocket [J].IOP Conference Series: Materials Science and Engineering, 2019:1–9.
- [15] SAULESCU R, VELICU R, LATES M. Geometric modelling of the contact point between the bushing and sprocket in chain drives [J]. IOP Conference, 2017, 174(1):012049.
- [16] NIKAM P, TANPURE R. Design optimization of chain sprocket using finite element analysis [J]. Journal of Engineering Research and Application, 2016, 6(9):66–69.
- [17] 程亚兵,陈璐翔,葛平玉,等.双相正时套筒链的动力学仿真分析 及磨损失效[J].吉林大学学报(工学版),2022,52(4):781-788.
 CHENG Yabing, CHEN Luxiang, GE Pingyu, et al.Dynamic simulation analysis and wear failure of dual-phase timing bush chain[J].
 Journal of Jilin University (Engineering and Technology Edition), 2022,52(4):781-788.
- [18] 闻邦椿.带,链,摩擦轮与螺旋传动[M]//5版.机械设计手册:单行本.北京:机械工业出版社,2015:98-138.
 WEN Bangchun.Belts,chains,friction wheels and screw drives[M]//5th ed. Machine design manual: a single book.Beijing: China Machine Press,2015:98-138.

收稿日期: 2022-09-20 修回日期: 2022-12-16

作者简介: 胡政(1998—), 男, 河南商丘人, 硕士研究生; 研究方向 为现代钻采机械设计; 2050267891@qq.com。